Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119736, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663552

RESUMEN

The crosstalk between lung cancer cells and cancer-associated fibroblast (CAF) is pivotal in cancer progression. Heat shock protein family D member 1 (HSPD1) is a potential prognostic biomarker associated with the tumor microenvironment in lung adenocarcinoma (LUAD). However, the role of HSPD1 in CAF activation remains unclear. This study established stable HSPD1-knockdown A549 lung cancer cells using a lentivirus-mediated shRNA transduction. A targeted label-free proteomic analysis identified six significantly altered secretory proteins in the shHSPD1-A549 secretome compared to shControl-A549. Functional enrichment analysis highlighted their involvement in cell-to-cell communication and immune responses within the tumor microenvironment. Additionally, most altered proteins exhibited positive correlations and significant prognostic impacts on LUAD patient survival. Investigations on the effects of lung cancer secretomes on lung fibroblast WI-38 cells revealed that the shControl-A549 secretome stimulated fibroblast proliferation, migration, and CAF marker expression. These effects were reversed upon the knockdown of HSPD1 in A549 cells. Altogether, our findings illustrate the role of HSPD1 in mediating CAF induction through secretory proteins, potentially contributing to the progression and aggressiveness of lung cancer.

2.
Viruses ; 13(4)2021 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920458

RESUMEN

Dengue virus (DENV) is the causative pathogen in the life-threatening dengue hemorrhagic fever and dengue shock syndrome. DENV is transmitted to humans via the bite of an infected Aedes mosquito. Approximately 100 million people are infected annually worldwide, and most of those live in tropical and subtropical areas. There is still no effective drug or vaccine for treatment of DENV infection. In this study, we set forth to investigate the effect of melatonin, which is a natural hormone with multiple pharmacological functions, against DENV infection. Treatment with subtoxic doses of melatonin dose-dependently inhibited DENV production. Cross-protection across serotypes and various cell types was also observed. Time-of-addition assay suggested that melatonin exerts its influence during the post-entry step of viral infection. The antiviral activity of melatonin partly originates from activation of the sirtuin pathway since co-treatment with melatonin and the sirtuin 1 (SIRT1) inhibitor reversed the effect of melatonin treatment alone. Moreover, melatonin could modulate the transcription of antiviral genes that aid in suppression of DENV production. This antiviral mechanism of melatonin suggests a possible new strategy for treating DENV infection.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Interferones/inmunología , Melatonina/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Sirtuina 1/metabolismo , Replicación Viral/efectos de los fármacos , Células A549 , Aedes , Animales , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Dengue/tratamiento farmacológico , Humanos , Redes y Vías Metabólicas/inmunología , Células Vero
3.
Arch Virol ; 166(6): 1623-1632, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33782775

RESUMEN

Dengue virus (DENV) is transmitted to humans via the bite of an Aedes mosquito, causing dengue fever, dengue hemorrhagic fever, or dengue shock syndrome. In the human skin, DENV first infects keratinocytes, dendritic cells, and macrophages. Monocytes that are recruited to the site of infection and differentiate into monocyte-derived dendritic cells (moDCs) are also infected by DENV. DENV-infected DCs secrete pro-inflammatory cytokines and chemokines to modulate the immune response. The viral load and massive pro-inflammatory cytokine/chemokine production, referred to as a 'cytokine storm', are associated with disease severity. We propose that an ideal drug for treatment of DENV infection should inhibit both virus production and the cytokine storm, and previously, we reported that alpha-mangostin (α-MG) inhibits both DENV replication and cytokine production in hepatocytes. However, the effect of α-MG on DENV-infected moDCs remains unknown. In this study, we investigated the effects of α-MG on DENV infection and pro-inflammatory cytokine/chemokine production in primary moDCs generated ex vivo from monocytes of healthy individuals. α-MG at the non-toxic concentrations of 20 and 25 µM reduced DENV production by more than 10-fold and 1,000-fold, respectively. Treatment with α-MG efficiently inhibited the infection of immature moDCs by all four serotypes of DENV. Time-of-addition studies suggested that α-MG (25 µM) inhibits DENV at the early stage of replication. In addition, α-MG markedly reduced cytokine/chemokine (TNF-α, CCL4, CCL5, CXCL10, IL6, IL1ß, IL10, and IFN-α) transcription in DENV-infected immature moDCs. These findings suggest the potential of α-MG to be developed as a novel anti-DENV drug.


Asunto(s)
Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Virus del Dengue/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Xantonas/farmacología , Animales , Supervivencia Celular , Chlorocebus aethiops , Citocinas/genética , Células Dendríticas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Vero
4.
Am J Cancer Res ; 10(2): 674-687, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195035

RESUMEN

Since the prognosis for children with high-risk osteosarcoma (OS) remains suboptimal despite intensive multi-modality therapies, there is a clear and urgent need for the development of targeted therapeutics against these refractory malignancies. Chimeric antigen receptor (CAR) modified T cells can meet this need by utilizing the immune system's potent cytotoxic mechanisms against tumor specific antigen targets with exquisite specificity. Since OS highly expresses the GD2 antigen, a viable immunotherapeutic target, we sought to assess if CAR modified T cells targeting GD2 could induce cytotoxicity against OS tumor cells. We demonstrated that the GD2 CAR modified T cells were highly efficacious for inducing OS tumor cell death. Interestingly, the OS cells were induced to up-regulate expression of PD-L1 upon interaction with GD2 CAR modified T cells, and the specific interaction induced CAR T cells to overexpress the exhaustion marker PD-1 along with increased CAR T cell apoptosis. To further potentiate CAR T cell killing activity against OS, we demonstrated that suboptimal chemotherapeutic treatment with doxorubicin can synergize with CAR T cells to effectively kill OS tumor cells.

5.
Virus Res ; 271: 197672, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31386864

RESUMEN

Dengue virus (DENV) infection has evolved into a major global health menace and economic burden due to its intensity and geographic distribution. DENV infection in humans can cause a wide range of symptoms including dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). An antiviral agent that is effective against all four serotypes of DENV is urgently needed to prevent and to manage this condition. Reducing the viral load during the early phase of infection may minimize the chance of patients progressing to more severe DHF or DSS. In this study, we set forth to investigate the anti-viral effect of five commercially available protease inhibitors on DENV infection since both viral and host proteases can contribute to effective viral replication. Previously, the serine protease inhibitor AEBSF [4-(2-aminoethyl) benzene sulfonyl fluoride] has been shown to inhibit DENV NS3 protease activity. The results of the present study revealed that DENV genome replication and protein synthesis were significantly inhibited by AEBSF in a dose-dependent manner. AEBSF inhibited the expression of genes such as 3-hydroxy 3-methyl-glutaryl-CoA synthase (HMGCS), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and low-density lipoprotein receptor (LDLR). Moreover, AEBSF significantly inhibited HMGCR activity and intracellular cholesterol synthesis after DENV infection. The anti-DENV effect of AEBSF was confirmed in all four DENV serotypes and in three different cell lines. These results indicate that AEBSF reduces DENV infection via both viral and host protease activities.


Asunto(s)
Colesterol/biosíntesis , Virus del Dengue/efectos de los fármacos , Dengue/metabolismo , Dengue/virología , Inhibidores de Serina Proteinasa/farmacología , Sulfonas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Virus del Dengue/clasificación , Virus del Dengue/genética , Genoma Viral , Humanos , Replicación Viral
6.
PLoS One ; 12(11): e0188121, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29145490

RESUMEN

Hepatic dysfunction is a feature of dengue virus (DENV) infection. Hepatic biopsy specimens obtained from fatal cases of DENV infection show apoptosis, which relates to the pathogenesis of DENV infection. However, how DENV induced liver injury is not fully understood. In this study, we aim to identify the factors that influence cell death by employing an apoptosis-related siRNA library screening. Our results show the effect of 558 gene silencing on caspase 3-mediated apoptosis in DENV-infected Huh7 cells. The majority of genes that contributed to apoptosis were the apoptosis-related kinase enzymes. Tumor necrosis factor superfamily member 12 (TNFSF12), and sphingosine kinase 2 (SPHK2), were selected as the candidate genes to further validate their influences on DENV-induced apoptosis. Transfection of siRNA targeting SPHK2 but not TNFSF12 genes reduced apoptosis determined by Annexin V/PI staining. Knockdown of SPHK2 did not reduce caspase 8 activity; however, did significantly reduce caspase 9 activity, suggesting its involvement of SPHK2 in the intrinsic pathway of apoptosis. Treatment of ABC294649, an inhibitor of SPHK2, reduced the caspase 3 activity, suggesting the involvement of its kinase activity in apoptosis. Knockdown of SPHK2 significantly reduced caspase 3 activity not only in DENV-infected Huh7 cells but also in DENV-infected HepG2 cells. Our results were consistent across all of the four serotypes of DENV infection, which supports the pro-apoptotic role of SPHK2 in DENV-infected liver cells.


Asunto(s)
Apoptosis/fisiología , Virus del Dengue/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Interferencia de ARN , Caspasa 3/metabolismo , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos , Hígado/virología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Replicación Viral
7.
Virus Res ; 188: 15-26, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24704674

RESUMEN

The liver is considered to be an important organ of dengue virus (DENV) replication and pathogenesis. However, molecular mechanisms of hepatic injury are still poorly understood. Modulation of Mitogen Activated Protein Kinases (MAPKs) was previously shown to affect DENV-induced apoptosis of hepatocytes in vitro. However, the in vivo role of ERK1/2, a member of the MAPK family, and the question whether its activation can facilitate cell survival or cell death, has not been thoroughly investigated. Therefore, the role of ERK1/2 in a mouse model of DENV infection was examined. Our results show that DENV induces phosphorylation of ERK1/2 and increases apoptosis. Inhibition of phosphorylated ERK1/2 by the selective ERK1/2 inhibitor, FR180204, limits hepatocyte apoptosis and reduces DENV-induced liver injury. Clinical parameters, including leucopenia, thrombocytopenia, transaminases and histology, show improvements after FR180204 treatment. The expression of cell death genes was further identified using real-time PCR array and Western blot analysis. Caspase-3 was significantly decreased in FR180204 treated DENV-infected mice compared to the levels of untreated DENV-infected mice suggesting the role of ERK1/2 signaling in immune-mediated liver injury during DENV infection.


Asunto(s)
Virus del Dengue/fisiología , Dengue/complicaciones , Hepatopatías/patología , Hepatopatías/virología , Sistema de Señalización de MAP Quinasas , Animales , Apoptosis , Western Blotting , Caspasa 3/análisis , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Biochem Biophys Res Commun ; 438(1): 20-5, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23867824

RESUMEN

Dengue virus (DENV) infection is one of the most important mosquito-borne viral diseases, which is endemic in the tropical and sub-tropical regions. Patients with dengue hemorrhagic fever (DHF) generally present hemorrhagic tendencies, plasma leakage, thrombocytopenia, and hemoconcentration. Hepatic dysfunction is also a crucial feature of DENV infection. Hepatic biopsy specimens obtained from fatal cases of DENV infection show cellular apoptosis, which apparently relate to the pathogenesis. Cathepsins, which are cysteine proteases inside the lysosome, were previously reported to be up-regulated in patients with DHF. However, their functions during DENV infection have not been thoroughly investigated. We show for the first time that DENV induces lysosomal membrane permeabilization. The resulting cytosolic cathepsin B and S contributed to apoptosis via caspase activation. The activity of caspase 3 was significantly reduced in DENV-infected HepG2 cells treatedwith cathepsin B or S inhibitors. Treatment with cathepsin B inhibitor also reduced the activity of caspase 9, suggesting that cathepsin B activates both caspase-9 and caspase-3. Reduced cathepsin B expression, effected by RNA interference, mimicked pharmacological inhibition of the enzyme and confirmed the contribution of cathepsin B to apoptotic events induced by DENV in HepG2 cells.


Asunto(s)
Apoptosis/fisiología , Catepsina B/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Membrana Celular/metabolismo , Membrana Celular/virología , Virus del Dengue/fisiología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Células Hep G2 , Humanos
9.
Biochem Biophys Res Commun ; 436(2): 283-8, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23743190

RESUMEN

Dengue Virus (DENV) infection is an important mosquito-borne viral disease and its clinical symptoms range from a predominantly febrile disease, dengue fever (DF), to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Increased levels of cytokines - the so-called 'cytokine storm', contribute to the pathogenesis of DHF/DSS. In this study, we compared the expression of cytokine genes between mock-infected and DENV-infected HepG2 cells using a real-time PCR array and revealed several up-regulated chemokines and cytokines, including CXCL10 and TNF-α. Compound A (CpdA), a plant-derived phenyl aziridine precursor containing anti-inflammatory action and acting as a dissociated nonsteroidal glucocorticoid receptor modulator, was selected as a candidate agent to modulate secretion of DENV-induced cytokines. CpdA is not a glucocorticoid but has an anti-inflammatory effect with no metabolic side effects as steroidal ligands. CpdA significantly reduced DENV-induced CXCL10 and TNF-α secretion and decreased leukocyte migration indicating for the first time the therapeutic potential of CpdA in decreasing massive immune activation during DENV infection.


Asunto(s)
Acetatos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Citocinas/metabolismo , Virus del Dengue/crecimiento & desarrollo , Extractos Vegetales/farmacología , Tiramina/análogos & derivados , Animales , Línea Celular , Ensayos de Migración de Leucocitos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiotaxis/efectos de los fármacos , Chlorocebus aethiops , Citocinas/genética , Virus del Dengue/fisiología , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Células Hep G2 , Interacciones Huésped-Patógeno , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virología , Receptores de Glucocorticoides/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salsola/química , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Tiramina/farmacología
10.
Virol J ; 10: 105, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23557259

RESUMEN

BACKGROUND: Hepatic injury in dengue virus (DENV) infection is authenticated by hepatomegaly and an upsurge in transaminase levels. DENV replicates in hepatocytes and causes hepatocyte apoptosis both in vitro and in vivo. Understanding the molecular mechanisms of DENV-induced hepatic injury could facilitate the development of alternate chemotherapeutic agents and improved therapies. FINDINGS: The p38 mitogen-activated protein kinase (MAPK) participates in both apoptosis-related signaling and pro- inflammatory cytokine production. The role of p38 MAPK in DENV-infected HepG2 cells was examined using RNA interference. The results showed that DENV infection activated p38 MAPK and induced apoptosis. The p38 MAPK activation and TNF-α production were controlled by p38 MAPK and CD137 signaling in DENV-infected HepG2 cells as activated p38 MAPK, TNF-α and apoptosis were significantly decreased in p38 MAPK and CD137 depleted DENV-infected HepG2 cells. Addition of exogenous TNF-α to p38 MAPK depleted DENV-infected HepG2 cells restored DENV-induced apoptosis in HepG2 cells. CONCLUSION: DENV induces CD137 signaling to enhance apoptosis by increasing TNF-α production via activation of p38 MAPK.


Asunto(s)
Apoptosis , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Transducción de Señal , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Células Hep G2 , Hepatocitos/inmunología , Hepatocitos/fisiología , Hepatocitos/virología , Humanos
11.
Biochem Biophys Res Commun ; 423(2): 398-403, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22664104

RESUMEN

Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Quimiocina CCL5/biosíntesis , Virus del Dengue , Proteínas Nucleares/metabolismo , Dengue Grave/inmunología , Proteínas no Estructurales Virales/metabolismo , Proteínas Co-Represoras , Células HEK293 , Humanos , Chaperonas Moleculares , Técnicas del Sistema de Dos Híbridos
12.
Biochem Biophys Res Commun ; 410(3): 428-33, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21669186

RESUMEN

Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.


Asunto(s)
Apoptosis , Virus del Dengue , Dengue/metabolismo , Dengue/patología , Hígado/metabolismo , Hígado/patología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Línea Celular Tumoral , Dengue/genética , Humanos , Hígado/virología , Transducción de Señal , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética
13.
Virus Res ; 156(1-2): 25-34, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21195733

RESUMEN

Dengue virus (DENV) is a major emerging arthropod-borne pathogen, which infects individuals in both subtropical and tropical regions. Patients with DENV infection exhibit evidence of hepatocyte injury. However, the mechanisms of hepatocyte injury are unclear. Therefore we examined the expression of cell death genes during DENV-infection of HepG2 cells using real-time PCR arrays. The expression changes were consistent with activation of apoptosis and autophagy. Expression of the up-regulated genes, including RIPK2, HRK, TGF-ß, PERK, and LC3B, was confirmed by quantitative real-time PCR. RIPK2 belongs to the receptor-interacting protein family of serine/threonine protein kinases, which is a crucial mediator of multiple stress responses that leads to the activation of caspase, NF-κB and MAP kinases including JNK and p38. RIPK2 activity is inhibited by the p38 MAPK pathway inhibitor SB203580. The effect of SB203580 on RIPK2 expression and DENV-induced apoptosis was tested in DENV-infected HepG2 cells. The inhibition of RIPK2 expression by SB203580 significantly reduced apoptosis. SB203580 also significantly reduced DENV capsid protein (DENVC)-mediated apoptosis. Suppression of endogenous RIPK2 in DENV-infected HepG2 cells by small interfering RNA (siRNA) significantly decreased apoptosis suggesting for the first time that RIPK2 plays a role in DENV-mediated apoptosis.


Asunto(s)
Apoptosis , Virus del Dengue/metabolismo , Regulación de la Expresión Génica , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica , Células Hep G2 , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...